Cultured Smooth Muscle Ganglion Neurons Targets Survival Activity for

نویسندگان

  • Douglas J. Creedon
  • Jeremy B. Tuttle
چکیده

Cultured neurons require specific trophic agents in order to survive. This dependence is thought to resemble the neuron-target interdependence that develops in vivo during synaptogenesis and neuronal cell death. The notion that neurons in general derive trophic support from their synaptic targets is based primarily on studies of peripheral neurons and motor neurons. To assess the general applicability of this nerve-target relationship, we tested the ability of vascular smooth muscle (VSM) to support dissociated neurons from the chick ciliary ganglion. The ciliary ganglion contains 2 distinct neuronal populations, one of which innervates striated muscle, the other VSM. Striated muscle cocultures are known to support all of the neurons in the ganglion for extended periods. Dissociated neurons were therefore cocultured in microwells containing VSM derived from the rat or chick aorta and from the choroid coat of the chick eye. Surviving neurons were counted after 1,2,5, and 7 d. Striated muscle is able to support full neuronal survival in the same assay. However, in no case was VSM capable of contributing to neuronal survival in vitro. The neurons in the VSM cocultures were able to form neurites and make contacts with their putative targets, as confirmed by scanning electron and light microscopy. The presence of viable and differentiated smooth muscle cells was demonstrated in the cultures by transmission electron microscopy and analysis of smooth muscle a-actin. The failure of VSM and even the choroid target tissue to support the survival of their innervating neurons suggests that novel mechanisms may operate to provide trophic support for neurons innervating VSM targets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Choroid tissue supports the survival of ciliary ganglion neurons in vitro.

It is well established that during in vivo development the neurons of the avian ciliary ganglion are dependent for their survival on structures in the eye. Separate neuron populations innervate intraocular smooth and striated muscle targets. All ciliary neurons survive when cocultured with striated muscle. We demonstrate that when ciliary ganglion neurons are plated on explants of the choroid c...

متن کامل

NGF-independent survival of postganglionic sympathetic neurons in neuronal-vascular smooth muscle cocultures.

The present study tests the hypothesis that vascular cells promote the survival of postganglionic sympathetic neurons in the absence of nerve growth factor (NGF). To test this hypothesis, neurons isolated from superior cervical ganglia of 2- to 4-day-old rat pups were grown in the absence of NGF and in the absence and presence of vascular smooth muscle cells (VSM). Neuronal survival was assesse...

متن کامل

Differential neuronal survival in the avian ciliary ganglion after chronic acetylcholine receptor blockade.

We have described in the preceding 2 papers the development of the pharmacological and contractile properties of all targets of the ciliary ganglion: the iris and ciliary body (Pilar et al., 1987), and the choroidal coat (Meriney and Pilar, 1987). In this paper, we examine the chronic effects of ACh receptor (AChR) blockade on ciliary ganglion neuron survival. Nicotinic or muscarinic AChR block...

متن کامل

The generation of neuronal heterogeneity in a rat sensory ganglion.

Adult sensory neurons differ chemically, morphologically, and functionally, but the factors that generate their diversity remain unclear. For example, neuropeptides are generally found in small neurons, whereas abundant neurofilament is common in large neurons. Neurons containing the neuropeptides calcitonin gene-related peptide (CGRP) or substance P were quantified using immunohistochemistry i...

متن کامل

Stimulation of Somatostatin Expression in Developing Ganglion Neurons by Cells of the Choroid Layer Ciliary

An important component of neuronal development is the matching of neurotransmitter expression with the appropriate target cell. We have examined how peptide transmitter expression is controlled in a simple model system, the avian ciliary ganglion (CG). This parasympathetic ganglion contains 2 distinct types of neurons: choroid neurons, which project to vasculature in the eye’s choroid layer and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003